
2558 

SLIP EFFECTS IN OSCILLATORY FLOW OF VISCOELASTIC LIQUIDS 

Ondi'ej WEIN 

Institute of Chemical Process Fundamentals, 
Czechoslovak Academy of Sciences, 16502 Prague 6 - Suchdol 

Received June 25th, 1984 

Theory has been submitted of measurement of complex viscosity, accounting, appart from the 
inertia of liquid, and compliance of the instrument measuring the oscillatory shear stress, also 
for the effect of the slip of liquid on the wall of the measuring cell. 

Modern oscillatory rheometers for testing viscoelastic materials in region of low 
overall shear stresses are, as far as their mechanical and electronic part is concerned, 
so perfect that the data on complex viscosity carry, in favourable cases, inaccuracy 
of only a few percent. In addition, primary data may be processed to give information 
about nonlinear dynamic propertiesl - 4 • These options of the instrument, however, 
can effectively be made use of provided that the processing of the primary data takes 
into account also secondary effects. Secondary effects, unfortunately, cannot be 
completely eliminated in the realization of the rheometric experiment. 

Typical secondary effects represent inertia of the oscillating liquid and, further, 
compliance and inertia of the rheometer measuring the oscillatory shear stress in li
quid. For common geometric configurations these effects have been already analyzed 
with relatively good results and relevant information may be found in standard 
handbookss- 7 • 

Nevertheless, the effect of apparent slip on the wall, which may prove im
portant8 - 10 in steady-state viscometry, has not been so far investigated as a pos
sible source of systematic deviations of measurements of complex viscosity. In the sub
mitted paper we shall analyze slip effects assuming that even under the conditions 
of oscillatory flow the dynamics of the slip may be characterized by a linear relation
ship between the instantaneous slip velocity, us(t), and the instantaneous shear 
stress, -r(t), on the slip surface, i.e. the wall of the instrument. Thus 

u.(t) = X-r(t) . (1) 

The coefficient X is taken to be a material constant dependent both on the quality 
of liquid and the wall. 
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Let us consider first an oscillatory flow of a Newtonian liquid of viscosity f.1 in an h 
wide slot between two parallel slabs. One of the slabs is immobile while the other 
performs harmonic oscillations with instantaneous deviation from the mean posi
tion Id(t). Thus 

lit) = L sin (wt) . (2) 

After neglecting the inertia effect in the oscillating liquid, the instantaneous shear 
stress may be taken equal in all points of liquid and identical with the value deter
mined from the force reaction of both slabs confining the liquid. Since for a Newton
ian liquid the shear stress is in phase with the shear rate, ret) = f.1y(t) and, according 
to the assumption(1), also with the slip velocity, we may clearly write 

hy(t) = Id(t) - 2x-r(t) = wLcos (wt) - 2Xlly(t). (3) 

The actual shear rale is thus proportional to the nominal value yo(t) 

yo(t) = wLh- 1 cos (wt) (4) 

but it is diminished by the effect of the slip on both walls 

yet) = yo(t)j(l + 2S1) . (5) 

The simplex 

Sl = Xlljh (6) 

characterizes thus the relative effect of the slip on one wall as the ratio of the real 
thickness, h, of the layer of liquid, to the thickness XIl, corresponding to the velocity 
difference L1u = YXf.1 due to the shearing deformation of liquid, the velocity dif
ference being equal the slip velocity under the given conditions. For a liquid of con
stant X and f.1 the relative effect of the slip, according to Eqs (5) and (6), is independent 
of the magnitude of the shear rate. 

The measurement of slip velocities under the steady state conditions suggests 
that for concentrated polymer solutions the values of Xf.1 may amount up to several 
tenths of milimeters9 •1O• For commonly used widths of the slot of oscillatory visco
meters, not exceeding one millimeter, values of the simplex Sl ranging from hundredths 
up to tenths may be regarded as typical. 

FORMULATION OF THE PROBLEM 

For an estimate of the effect of the slip on the measurement of viscoelastic response 
we shall consider a unidimensional model situation sketched in Fig. 1. 
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The tested material fills the slot of width h between a pair of parallel slabs 3,4, 
located in the planes z = 0 and z = h and performing oscillatory motion in the 
direction of the axis x. The driving slab 3 performs, relatively to the immobile base 7, 
forced harmonic oscillations with an instantaneous deviation [d(t) from the equi
librium position, expressed by Eq. (2). The measuring slab 4 is pushed into equi
librium position 0', relatively to the immobile base 7', by a linear elastic part 6. 
I ts rigidity is characterized by the constant K, indicating the ratio between the tangen
tial shear stress, T, and the deviation, 1m , from the equilibrium position under the 
steady state conditions, 1m = KT. Under oscillatory motion also the inertia, I, of the 
mechanical part ofthe measuring device should be taken into consideration, characte
rized together with the rigidity, K, by the following equation of motion 

(7) 

where Th(t) is the course of the shearing stress on the boundary surface between the 
liquid and the slab of the measuring device. 

The slip effect may cause that the real velocities of liquid near the wall Vo, Vh , 

differ from those of the walls, ld' 1m , the difference being the slip velocity 

(8a) 

(8b) 

with the constant slip coefficients Xd' Xm' 
The dynamics of the oscillatory flow of liquid in the volume of the slot shall be 

examined within the framework of approximation of linear viscoelasticity, cha
racterized by the relaxation modulus. G(s), and by incorporating the inertia effects of 

FIG. 1 

Sketch of the oscillation experiment 
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liquid .of density (2. Resulting equations of motion for unidimensional flows take 
the familiar form 

(9) 

r(z, t) = f~ G(s) y(z, t - s) ds , (10) 

(11) 

and, together with the boundary conditions (8a, b), supplemented with the condi
tions of periodicity, v(z, t + Llt) = v(z, t), r(z, t + Llt) = r(z, t), with the period 
Llt = 2rr/w, represent, for given lit) and given dynamics of the measuring device, 
Eq. (7), an unambiguously defined boundary value problem. For its solution we shall 
take the fields r, v, y and the transient course of the deflections of the measuring device, 
lm(t). 

REPRESENTATION OF THE SOLUTION BY COMPLEX MODULES 

Representation of a harmonic function of time, J(t), as the real part of the product 
of a complex module, J*, and complex frequency, exp (iwt), 

f(t) = fe cos (wt) + fs sin (wt) = f* exp (iwt) , (12) 

where 

f* = fe - if. = If*1 exp (- i4» (13) 

is fairly commonly utilized for description of the periodic response functions in elec
tronics 11, heat transfer12 , rheology5 -7. As an advantage of this representation 
appears that the determination of the amplitude, If*1 and the phase lag, 4>, of the 
harmonic function, f(t), defined usually as a solution of the differential or integral 
equations with time variable, reduces to simple algebraic manipulation following 
the rules of multiplication and addition of complex numbers. 

The problem under investigation is linear and the forcing function, lit), is harmo
nic. All time-variable fields, v(z, t) r(z, t), y(z, t), as well as the remaining time-variable 
parameters of the problem, e.g. [met), are harmonic functions of time. Accordingly, 
they may be represented by the way suggested in Eq. (12). The principal reason for the 
representation of the examined problem in terms of complex modules is the possibility 
of solving the problem generally, for an arbitrary linear viscoelastic material. For 
a harmonic course of the shearing velocity, yet) = y* exp (iwt), the stress response, 
according to the constitutive Eq. (10), is also harmonic, ret) = r* exp (iwt). The 
relationship between appropriate complex modules r*, y* may be expressed in a simple 
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manner 

-r* = fl*Y* (14) 

in which the rheologic properties of liquid are represented by the complex viscosity 
fl*(CO), or, by the corresponding pair of real material functions flV(CO), flE(CO) 

(15) 

In the problems on harmonic oscillatory motion of materials, considering their 
inertia and linear viscoelastic behaviour, a fundamental role is played by the com
plex thickness of the boundary layer, 15* 

(16) 

For oscillations of bodies in infinite liquid, the real part of 15* characterizes the dis
tance from the body where, owing to the dissipation, substantial attenuation of the 
amplitude of velocity and stress occurs. The imaginary part of 15* characterizes the 
wavelength and corresponding velocity of spread of the disturbance into the bulk 
of liquid. For oscillatory flow of given frequency, co, in a slot h wide the character 
of interference of the deformation and inertia forces is determined by a single com
plex criterion of rheodynamic similarity6.7 H = h/b*. For this criterion we may write, 
in accord with Eq. (16), that 

(17) 

Complex modules, characterizing harmonic time course of the stress, velocity 
and shear rate, shall be introduced as conveniently normalized functions of com
plex variable Z 

v(z, t) = coLV(Z) exp (icot) , (18£1) 

y(z, t) = Yor(Z) exp (icot) , (I8b) 

-r(z, t) = fl*YoT(Z) exp (icot) , (18c) 

where 

Z = Z/b* = Hz/h , (19) 

Yo = coL/h. (20) 

The time variable I shall be measured from a suitable instance so as to preserve 
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validity of the description of the motion of the driving slab as in Eq. (2) 

fit) = -iL exp (iwt) , 

fm(t) = -iLm exp (iwt) . 

2563 

(21a) 

(21 b) 

With this assumption the parameter L (and hence also Yo) is a real number, while Lm 
generalIy assumes complex values. 

Substitution of the given definitions in the equations of motion, Eqs (9), (10) 
and (11), leads to the following set of equations 

r(z) = T(Z) = -HV'(Z) , 

V(Z) = _H-1T'(T) , 

(22) 

(23) 

where the apostrophe indicates derivative with respect to the complex variable Z. 
The resulting form of the boundary conditions read 

wL - wLV(O) = Xdl'/*YO T(O) 

(24) 

(25a) 

(25 b) 

The material parameters I'/E, I'/v are not realIy weH suited for normalization of the 
boundary conditions and introduction of criteria of rheodynamic similarity. Their 
values may significantly vary, following a change of frequency, a fact that would 
considerably complicate interpretation of results for asymptotic cases w -+ 0 and 
w --+ 00. Instead of I'/E, I'/v we shaH therefore utilize their following combination 

A(W) = I'/E(W)/(Wl'/V(w», 

,u(w) = I'/V(w) (1 + W2A2(W». 

(26a) 

(26b) 

The parameters A and ,u vary little with frequency and for w -+ 0 or w --+ 00 take 
on nonvanishing asymptotic values. Thus we arrive at a set of real-valued criteria 

De = AW = I'/E(W)/I'/V(w) 

'" = g}.-lh 2/,u 

Cp = ,u}.-lh-1(K + w2ltl 
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(30a, b) 

and their complex analogs 

H2 = De(i - De)'" (31) 

Cp* = fJ*w = Cp De(i + De) 
ih(K - w2I) i(l + De2 ) 

(32) 

SJ* _ Xd,hfJ* _ 1 - i Do! Sl 
d,h - -h- - 1 + De2 d,h' (33) 

appearing in the normalized boundary value problem with the following boundary 
conditions 

1 - V(O) = Sl: T(O) , 

V(H) - Lm/L = Sl! T(H) , 

-Lm/L = -Cp*i T(H). 

(34a) 

(34b) 

(34c) 

Formal solution takes the form of a linear superposition of exponential functions 
of complex variable (H - Z) 

with 

T(Z) = E-l[cosh (H - Z) + H(Cp*i - Sl!) sinh (H - Z)] (35) 

V(Z) = E-1[H- 1 sinh(H - Z) + (Cp*i + SI!)cosh(H - Z)] (36) 

E = [1 + H 2 SI:(Cp*i + Sl!)] H- 1 sinh H + 

+ [Sl: + Sl! + Cp*i] cosh H . 

(37) 

(38) 

For the special case Sl: = Sl! = '0 the solution is identical with the results presented, 
e.g. in monographs6 ,7 (with parameters (H - Z) = ilXz, H = ilXh). 

RESULTS 

Under ideal conditions (H = 0, Sl:,m = 0, Cp* = 0, E = 1), solution of the problem 
under consideration becomes rather trivial. T(Z) = 1, V(Z) = 1 - z/h, and the 
following complex representation of the preliminary processing of the harmonic 
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response signal 

(39) 

gives, according to Eq. (37), directly the complex viscosity, for given frequency 
1'/: = I'/*(w). Under the real conditions, when the mentioned criteria are nonvani
shing, the determination of 1'/* necessitates solution of the complex equation (37), 
which may be written in the form I'/*E- 1 = 1'/:, or, as set of two real transcendent 
equations with known right hand sides 1'/:, I'/~ and the real pair of roots I'/E, I'/v. 

I'/VCV(I'/V,I'/E) = 1'/: (40a, b) 

I'/ECE(I'/ v, 'IE) = 'I~ . 

The structure of this set follows from the definition (32), (39) and from the results 
(37) and (38). The correction coefficients, cV, cE, according to these equations, may be 
conveniently expressed as real functions of the arguments 1'/ V, I'/E through the com
ponents of the complex determinant E = ER + i E 1 

CV = (ER - De EI)/(E~ + ED 
cE = (ER + De- l EI)/(E~ + En 

given as functions of real parameters t/I, De, Cp, Slm,p 

ER = (1 - AI) BI - A2B2 + A3B3 - A4B4 

EI = (1 - AI) B2 + A2BI + A3B4 + A4B3 , 

At = Sldt/l De2(l + De2tl (Cp - Slm) 

A2 = S~t/I De(1 + De2tl (Cp De2 + Slm) 

A3 = (1 + De2t1 (Cp De2 + Slm + SId) 

A4 = De(1 + De2tl (Cp - Slm - SId) 

BI = (ex sinh ex cos P + P cosh ex sin P)(ex2 + p2tl 

B2 = (ex cosh P sin p - p sinh ex cos P)(ex2 + p2t1 

B3 = cosh ex cos P 
B4 = sinh ex sin p . 

Parameters ex, p here indicate the real and the imaginary part of H, 

(41a, b) 

(42a, b) 

(43a, b, c, d) 

(44) 

H = ex + iP = (Re/2)1/2 {[1 - De/(l + De2)1/2]I/2 + i[1 + De/(1 + De2)1/2]1/2} , 

(45) 
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where 

(46) 

Ignoring the effect of inertia, 1/1 = 0, and assuming that the slip properties of both 
boundary surfaces are equal, Xm = Xd' = 1/1, SId = Slm = Sl, the simultaneous 
effect of compliance of the measuring device and slip may be expressed through the 
correction coefficients cV , cE in a substantially simpler manner 

CV = (1 + 2 SI)a- 2 , cE = (I + cp)a- 2 , 

a 2 = [(1 + 2 Sl + Cp + De2)2 + De 2(2 Sl - cpy] (1 + De2t2 . 
(47a, b) 

(47c) 

From here already follow clear asymptotic estimates for the region of predominantly 
viscous De --+ 0 

c v = (1 + 2 Sl)j( 1 + 2 Sl + Cp)2 , 

cE = (l + Cp)j(1 + Cp + 2 SlY ' 

and for the region of predominantly elastic response, De --+ 00 

DISCUSSION 

CV = t + 2 Sl, 

cE = 1 + Cp. 

(48a, b) 

(49a, b) 

In the following discussion we shall confine ourselves to the case when both walls 
of the rheometer display the same properties, Slm = SId = O. In the set of Eqs 
(30a,b) then explicitly appear four real parameters De, 1/1, Cp, Sl which are quantita
t ive measure of the effects considered. For Maxwell's model of viscoelastic behaviour 7 

t he parameters p, A. appear to be material constants. However, even for more realistic 
courses of the material functions I]V(w), I]E(W) both p(w) and A.(w) vary little with 
frequency and for w --+ 0 and w --+ 00 take finite values. 

Let us first examine the question of interference of the inertia and viscoelastic 
effects. These effects have been represented in the model by a single complex crite
tion, H, and correspond to a pair of real criteria 1/1 and De. Current meaning of the 
Reynolds number has Re according to Eq. (46). 

For a common rheometric experiment one usually varies frequency of oscillations 
for a given liquid and configuration. To this procedure corresponds the change 
of De at constant 1/1, Sl and (sufficiently far from the region of resonant frequency 
of the measuring device) also Cpo 

For the case Sl = 0, Cp = 0 free of the slip and compliance effects, the depen
dence of cE and CV on frequency is shown in Fig. 2a, b. The dependence of CV on De 
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agrees with the common notion that for 00 -+ 0 the effect of the inertia forces on the 
measured response of the rheometer becomes negligible. As a criterion fully con
trolling the extent of the secondary effects appears here Re. The broken line in Fig. 2a 
indicates the course for Re = 1·8 for which CV ~ 0·9. 

The dependence of cE on De is at odds with the common concept that for 00 -+ 0 
the effect of inertia may be neglected in the processing of the dynamic data. Owing 
to the fact that for 00 -+ 0 both the elastic and the inertia forces are of the order 
0(002), its ratio at '" = const., is constant. Corresponding analytical result, according 
to Eq. (41a), for De -+ 0 reads 

cE = 1 + Cp + I/I(i + 2 Sl) + O(De). (50) 

Fig. 2b shows also the line Re = 1·8, corresponding to an increase of cE by about 
30% for Re -+ O. For values of Re above 4·5, CV is generally negative and cE > 2. 
This region is probably inaplicable for dynamic rheometry. 

A possible effect of slip, with the inertia ofliquid ignored (1/1 = 0), on the response 
of the rheometer, is described by Eqs (47a, b, c) and corresponding asymptotic 
representations (48a, b), (49a, b). It is apparent that the slip effects may decrease 
the nonelastic component of the response (for De ~ 1) or increase (for De ~ 1) 
by a factor of (1 + 2 Sl); the elastic component may be decreased (for De ~ 1) 
by a factor of (1 + 2 S1)2. For certain polymer solutions (e.g. 2% solution of carboxy
methyIcellulose8 •10) under steady state conditions the obtained values were IlX 
0·2 mm, while for others (1 % solution of polyethylene oxide13) these values are clearly 

cV 

1 1 
De 

FIG. 2 

The effect of sole inertia (SI = 0, Cp = 0) on the correction factors cV , cEo Broken line shows 
the contour Re = l·S, numbers on individual curves indicate values of'll. 
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below 0·01 mm. For current dimensions of the measuring cell of the oscillatory 
rheometer one can expect, at least for the medium concentration polymer solutions, 
values of the simplex Sl from the range 0'01 to 1. Available data obtained in experi
ments with variable h, e.g. ref. 14, usually display certain systematic deviations for 
different h. Without complete primary information, particularly the amplitude Land 
compliance of the measuring device, these data, however, cannot be correlated. 

This circumstance becomes even more obvious when considering more realistic 
cases when, simultaneously with the slip, also liquid inertia plays a role. For the 
case of significant slip effects, Sl = 0'5, the quantities CV and cE are plotted in Figs 
3a, b as functions of frequency of oscillations on several levels of inertia effects. 
The courses of CV in Fig. 3a bring nothing new in comparison with the case 1/1 = O. 
The inertia effects, considered in Fig. 2a, superimpose on the principal course of the 
dependence at 1/1 = 0 and supercritical values of Re = 1·8 (shown by broken line) 
and about ultimately a decrease of CV to negative values. The new effect, however, 
becomes manifest on the courses of cE, see Fig. 3b. While isolated slip or inertia 
effects lead to an increase of cE with increasing frequency, their simultaneous action 
in the supercritical region of Re brings about finally a decrease of cE to negative 
values. This turn is preceeded by an increase, which is in accord with the expected 
course under the influence of the inertia effects shown in Fig. 2b. It is thus seen that 
the inertia effect markedly corrects prediction of the effect of isolated slip to the 
value of the correction factors cV, CEo 

It remains to add a few words about the relevance of the analyzed model situation 
with regard to the real rheometric experiments in axially symmetric configurations. 

2.----

o 
o 

1 De' 10 

FIG. 3 

Combined effect of slip and inertia for Sl = 0'5, Cp = 0 on the correction factors cV , cEo 

For symbols see Fig. 2 
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It may be shown6 ,7 that with the common neglect of the centrifugal and Weissen
berg effects, i.e. under the assumption that oscillations do not give rise to a steady 
radial flow, the dynamics of the torsion oscillatory flow may be described by the 
same boundary value problem as the dynamics of the unidimensional flow. This 
conclusion remains in effect also after incorporating the slip effects in the frame work 
of the linear constitutive relation (1), which had been shown elsewhere15• 

The performed analysis showed that neglect of slip effects may lead to considerable 
systematic errors in the determination of complex viscosity, primarily in region 
of low frequency oscillations. The only way of revealing these effects is, equally 
as in the classic viscometry, simultaneous measurements on two configurations 
with different width of the slot. It has been also shown that for w --+ 0 the effects 
of inertia cannot be generally neglected in the determination of complex viscosity. 

The contribution of Professor Z. P. Shulman and his coworkers from Luikov Heat and Mass 
Transfer Institute of the Byelorussian Academy of Sciences, Minsk, to the discussion about possible 
effects of the slip on dynamic rheometric measurements is gratefully acknowledged. 
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